OSCAR IPT/Bold Stroke Open Systems Lessons Learned

Prepared by the OSCAR IPT for:

Glenn T. Logan - Lt Col USAF

Open Systems Joint Task Force

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
Public reporting burder for this collection of information is est and reviewing this collection of information. Send comments I Headquarters Services, Directorate for Information Operations law, no person shall be subject to any penalty for failing to cor	egarding this burden esting and Reports (0704-0188)	nate or any other aspect of this coll , 1215 Jefferson Davis Highway, S	ection of information, incluite 1204, Arlington, VA	luding suggestions for reducing 22202-4302. Respondents sho	this burder to Department of Defense, Washington ald be aware that notwithstanding any other provision of	
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE				3. DATES COVERED (FROM - TO)		
26-02-2000	Brief	ing		xx-xx-2000 to xx-xx-2000		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
OSCAR IPT/Bold Stroke Open Systems Lessons Learned				5b. GRANT NUMBER		
Unclassified				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
Logan, Glenn T.;				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION Open Systems Joint Task Force 2001 N. Beauregard St., Suite 800 Alexandria, VA22311	NAME AND	ADDRESS		8. PERFORMINO NUMBER	G ORGANIZATION REPORT	
9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS				10. SPONSOR/MONITOR'S ACRONYM(S)		
Open Systems Joint Task Force (OSJTF)				11. SPONSOR/MONITOR'S REPORT		
1931 Jefferson Davis Highway			NUMBER(S)			
Crystal Mall 3, Suite 104				, ,		
Arlington, VA22202						
12. DISTRIBUTION/AVAILABILIT	Y STATEMEN	VT				
APUBLIC RELEASE						
13. SUPPLEMENTARY NOTES						
14. ABSTRACT						
See Report.						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION	I OF:	17. LIMITATION	18.	19. NAME OF R	ESPONSIBLE PERSON	
		OF ABSTRACT			osd.mil/osjtf/library/library_alpha.ht	
		Public Release	OF PAGES		, , , , , , , , ,	
			59	lfenster@dtic.mi	I	
a. REPORT b. ABSTRACT c.			•	19b. TELEPHOI	NE NUMBER	
	nclassified			International Area C		
•				Area Code Telephor 703767-9007	ne Number	
				DSN		
				427-9007		

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39.18

Lessons Learned Agenda

0900-0915 Welcome (D. Weissgerber/J. Wojciehowski)

0915-1045 OSCAR Program (D. Weissgerber)

Early Expectations & Assumptions

Actual Experiences

1045-1100 Break

1100-1130 OSCAR Hardware (B. Abendroth)

1130-1145 Tools (C. Hibler)

1145-1200 Summary (D. Weissgerber)

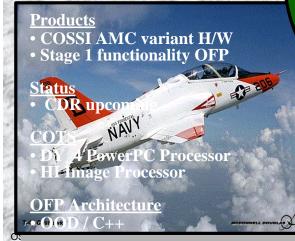
1200-1300 Lunch

Lessons Learned Agenda

1300-1400 Bold Stroke

OASIS (D. Seal)

Cost Performance & Metrics (E. Beckles)


1400-1500 Open Discussions

1500 Closing Remarks (D. Weissgerber/J. Wojciehowski)

3

Boeing Open Systems Status

Common Products

- HOL OFPs
- DOORS
- ROSE
- TORNADO (WindRiver)
- Gen Purpose Processor
- Image Proc. Module

BOLD

STROKE

Products

• H1, H2 and H3 OFPs

Status

• H1 Build 2 flight test - Aug. '00

The contract of the contract of

COTS

- DY-4 PowerPC Processor
- HI Image Processing
- Fibre Channel Network

OFP Architecture

• OOD / C++

Products

- EMD OFP
- Suite 5 OFP

Status

· EMD Go-Ahead - May '00

COTS

- DY-4 PowerPC Processor
- HI Image Processor

OFP Architecture

• Ada / C++ / C

Boeing's Previous System Arch Lesson Learned Case Studies

- Software Modification/Maintenance Costs Are a Significant Recurring Investment
- Must Break the Block Upgrade Paradigm Made Necessary by the Tight Coupling Between OFPs and Specific H/W Configurations
- Assembly Language OFPs Have Become Increasingly Unstructured Through Many Upgrade Iterations

OSCAR IPT Open System Lesson Learned Analysis

- Represents a Snapshot-In-Time
 - Where We've Been
 - Where We Are
 - Where We're Going
- Compiled by the Engineers Working the Issues
 - Analysis of Key Impact Areas
- Identifies Current Top 10 OSCAR Lessons Learned
- Provides a Basis for Future Lessons Learned Comparisons/Analysis

AV-8B OSCAR Principles

- Follow US DoD Directive For Acquisition Reform
 - Apply Revised DoD Directive 5000 (dated 15 Mar 96)
 - Commercial Business Philosophy
 - Performance Based Specs vs Procurement Specs
- Insert Commercial Technologies
 - COTS Hardware
 - COTS Software Development Environment
- Reduce Life Cycle Cost
- Apply Open System Architecture
 - Emphasis on Non-Proprietary Hardware and Software
 - Object Oriented Design and High Order Language
 - Software Independent of Hardware
- Increase Allied Software Development Workshare

Review of Early Expectations

OSCAR's Goals

- Reduce Life Cycle Support Cost of Software Upgrades (Cost Savings to be Realized during 3rd Block Upgrade)
 - Shortened OFP Development Cycle
 - Reduce Rework in Dev Cycle & DT/OT
 - Reduce Regression Testing in OC1.2 (OC1.1 set baseline)
- Leverage Commercial Technology
- Incorporate an Open Architecture Concept
- No Reduction in System Performance

Review of OSCAR Open System Assumptions

- Implementation of Open Systems H/W and S/W Requires Up-Front Investment
 - Recoupment Within 2-3 Updates to the S/W
- Open System Computing H/W is Based on Commercial Standards
 - Promotes Competition
 - Takes Advantage of Commercially Driven Requirements for Technology Insertion
- LCC Analysis Shows a 30-40% Cost Reduction in Core Computing H/W and S/W Development but not necessarily applicable to System Integration/Test of Multi-Sys Block Upgrades

2/26/00 OSCAR-TDL12-003-V1

Review of OSCAR Open System Assumptions (cont.)

- OSCAR and Open Systems Computing Does Not Affect Tasks Associated with the Airframe or Flight Qualification of New Weapons/Capabilities
- Two-Level Maintenance Concept Philosophy Will Reduce LCC and Increase Operational Availability
- OSA provides Arch for a Plug-and-Play Trainer Concept
- With OSCAR as First Large Scale Implementation of Open Systems and Object Oriented S/W:
 - Reluctance to Fully Realize the Cost Benefits Until OSCAR is Fielded and all the Data Collected and Analyzed

Review of OSCAR's Open System Assumptions (cont.)

- OSCAR's Open System Architecture Will Make Incremental Upgrades Possible by Decoupling H/W and S/W (I.e., MSC-750-G4)
- Commercial Off-The-Shelf Products can be Directly Incorporated with Minimal Development Costs
 - Multi-Vendor Support Ensures Competitive Procurement Costs
- Software LCC Savings are Derived from the High Degree of Modularity Envisioned
 - Less Than Half the Regression Test and Re-Qual Effort of Today

Data & Metrics Currently Collected

- SPI
- CPI
- Requirements -- System & software levels, stability index
- SLOC -- Estimates vs. actuals, productivity factor
- Classes
- Peer Review
- TWD -- Development & ground test execution
- Flight Test -- flights, test points, analysis
- Problem Reports various flavors
- Throughput & Memory Spare
- Hardware Performance
- Risk

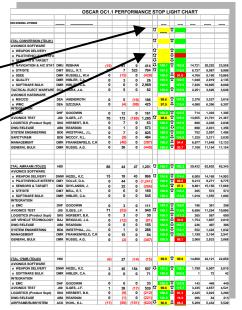
Initial Expectations for Metrics

- SPI -- Identify an immediate schedule problem
- CPI -- Control overspending, identify underruns
- System & Software Requirements -- Track the development to plan and identify any Growth
- Requirements Stability -- Control requirements growth
- SLOC Actuals vs. Estimated -- Control growth and 'goldplating'
- Software productivity (Manhrs/SLOC) -- Improve efficiency within which software is produced
- Classes Actuals vs. Planned To Date -- Indication of performance to schedule
- Peer Review -- Capture errors before the product is delivered

2/26/00

Initial Expectations of Metrics

- TWD Development & Ground Test -- Readiness of test team to support system level test phase
- Problem Reports -- Quality of the software & where are problems found
- Throughput/Memory -- Keep software within the bounds of hardware performance
- Risk -- Control risks & be prepared to act quickly if they materialize


SPI -- Watch The Details

- Lower level problems are masked within larger cost accounts
- Top-level SPI can mask lower level account SPI difficulties

Provides good focus for the CAMs

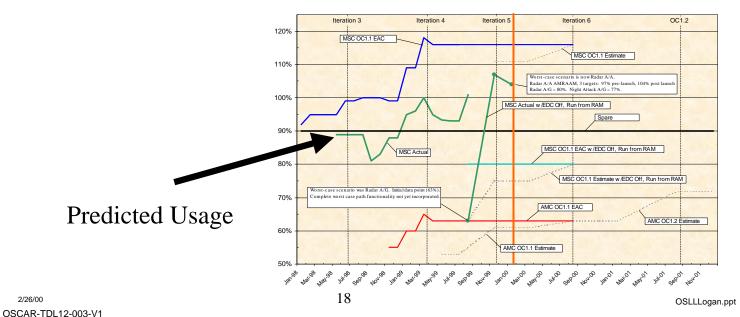
Overall Program Healthy

Critical Path Behind Schedule

2/26/00 OSCAR-TDL12-003-V1 15

SLLLogan.ppt

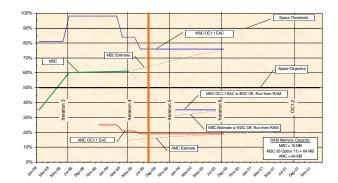
• CPI -- New functionality Costs More Than Legacy

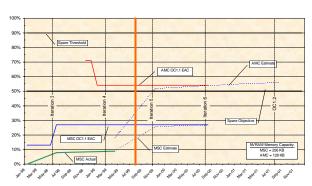

| New Functionality | Table |

- System Requirements No Changes Resulting From OO/C++ Development
 - Level Of Detail & Complexity Commensurate With Assembly
 - OO Makes Traceablity To Code Is Difficult (see other chart)
- Requirements Stability -- good to show what's moving through the system, but don't really know how many requirements and corresponding code/tests are affected (traceability)
- Risks -- hard to maintain a monthly review juggling schedules, but good tool to keep on top of issues, when High risks are identified - resources are focused on them
 - Engineers tend to set risks at HW/SW detail level and not see the top level System Functionality High Risks

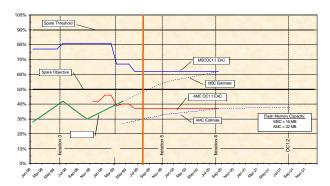
Throughput Usage

OO , COTS OS makes throughput consumption difficult to predict



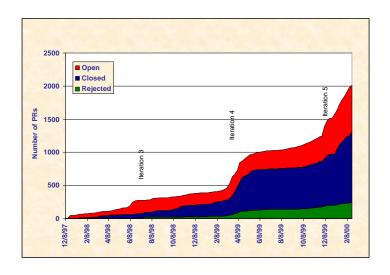


MSC/AMC NVRAM Memory Utilization

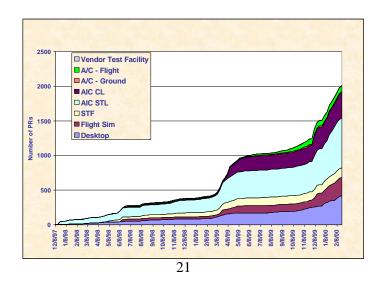

Actual Memory Consumed, Estimate by Iteration, and Estimate at Complete

MSC/AMC RAM Memory Utilization
Actual Memory Consumed, Estimate by Iteration, and Estimate at Complete

MSC/AMC Flash Memory Utilization
Actual Memory Consumed, Estimate by Iteration, and Estimate at Complete

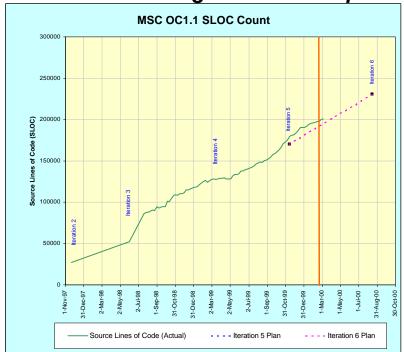

Memory Usage

- Consumption can be predictably scaled from assembly language implementation


OSLLLogan.ppt

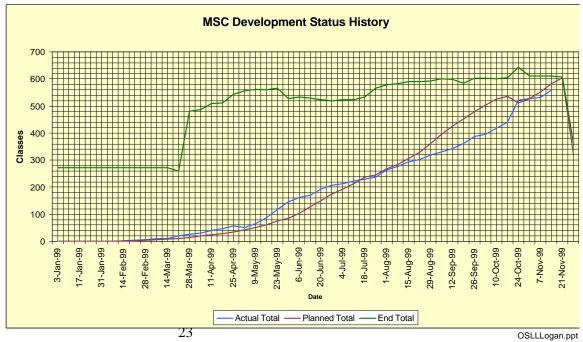
Problem Reports -- Open/Closed/Rejected

 OO/C++ enables <u>trained</u> developers with Tools to rapidly diagnose and correct anomalies.



- Problem Reports Where Found
 - DTE Saves Time & Money
 - Provides a "Software Test Facility" on every desktop
 - Less problems found in flight than Legacy OFP

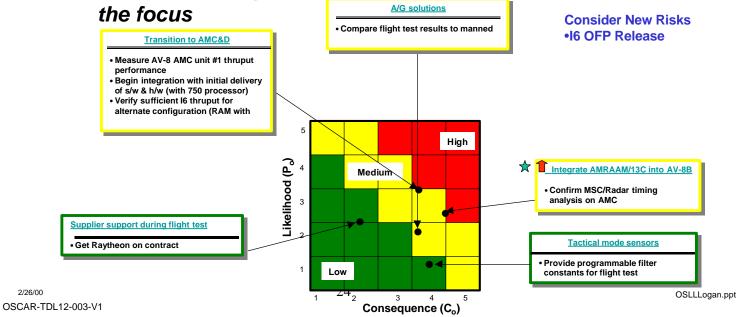
2/26/00 OSCAR-TDL12-003-V1


- SLOC
 - Not very useful
 - Some code "auto"-generated by 4th generation tools
 - Poor unit for estimating resources required

2/26/00 OSCAR-TDL12-003-V1 OSLLLogan.ppt

• Classes

- Best measure of development progress
 - Similar to function points
 - SLOC difficult to estimate


2/26/00 OSCAR-TDL12-003-V1

• Risk

- Good tool to keep on top of issues but can bring too much Political help
 - When high risks are identified -- resources are focused on them

Discipline of regular periodic review is important to keep

Algorithms

Summary of OS Lessons Learned For Currently Collected Metrics

- SPI -- Watch The Details
- CPI -- New functionality Costs More Than Legacy
- System Requirements No Changes For Assembly
 Traceablity To Code Is Difficult
- TWD Development -- Same as in Traditional Development
- SLOC count -- Not as Useful for OO/C++ Development Tracking
- Classes -- Good Indicator of Development Progress

Summary of OS Lessons Learned For Currently Collected Metrics

- Problem Reports Total -- OO/C++ a Benefit to Problem Resolution
- Problem Reports Where found -- DTE Saves Time & Money
- Throughput Usage OO, COTS Makes Prediction Difficult
- Memory Usage Scaleable from Legacy Development
- Risk Good Tool to Focus Attention & Resources, if Risk Identification doesn't get too Political

Technology Challenges

COTS supports the code/debug/unit test stages of development well but many <u>Voids</u> still exist:

- "Front end" of process
 - Model-based tools for requirements/design capture
 - Automated configuration and integration of components
- "Back end" of process
 - Simulation-based testing
- Support for hard real-time embedded systems is limited
 - Quality-of-service requirements expression/guarantees
- · Legacy system constraints
 - Infusing new technology into resource-limited, "closed" systems
- High Integrity System development technologies

Cultural Challenges

- Acquisition culture presents impediments as well
 - "Silo" approach to planning/funding system modernization
 - "Wasn't invented here" mindset in programs
 - Inability to trade front-end investment for life-cycle returns, even when business case is compelling
 - Synergy with COTS industry will always be limited without cultural transformation
 - Support structure based on single fielded configuration
 - T&E community resistance to tailored re-qualification

No incentive for multi-platform development

OSA Lessons Learned - Standards

Goal: Use Widely Accepted Commercial Standards

- Standardize Module Form, Fit, Function and Interface (F³I) to Allow Functional Performance Upgrades
- USE COTS Standards for Networks, Processors, Memory, and Operating System

Reality: Existing Commercial Standards Do Not Typically Accommodate Aerospace Requirements

- Real Time Operation Flight Dynamics
- Memory Partitioning for Fault Containment
- Built-In-Test

Solution: Modify Commercial Standards Through Active Participation in Standards Bodies

- ANSI Fibre Channel Avionics Environment (FC-AE)
- Modify Commercial STD Common Object Request Broker Architecture (CORBA) for Real-Time Operation
- Add Service Layers on Top of Commercial Software Infrastructure

OSA Lessons Learned - Specifications

Goal: Focus on Specifying Functional/Performance

Requirements versus "How To"

Use Commercial Specs Wherever Possible

Use Tailored Mil-Specs

Eliminate Unnecessary "How To" specs

Reality: It is Difficult to Prevent Engineers (Boeing, Customer, and Supplier) From Diving Down Into Too Much Detail

- Commercial Specifications may not match Aerospace requirements
- Additional effort needed to ensure Performance Levels and interoperability Are Achievable

Solution: Need to get a Better Handle on the High Level Performance Requirements

- Develop benchmark application program to validate memory and throughput for COTS processors
- Using a "Performance Prediction Team" to Conduct Simulation and Modeling of Key System Attributes.
- Evaluate Lab Prototype H/W to Gather Data.

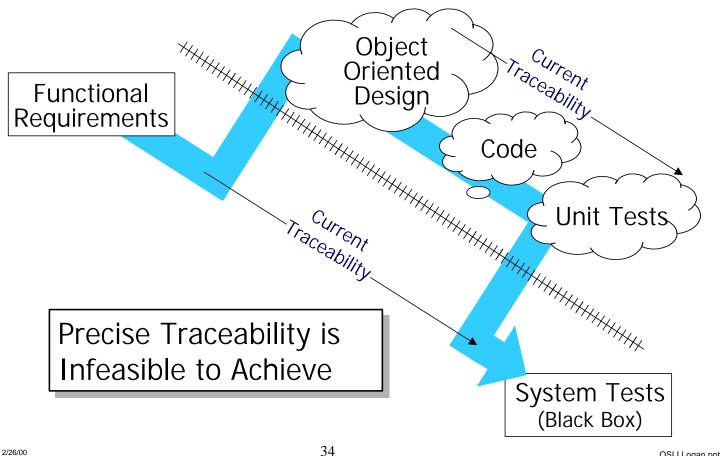
COTS Lessons Learned

- COTS May Not Work As Well For Your Application As The Application For Which It Was Developed
- COTS Frequently Has Surprises, Especially With Little Used Features
- COTS Documentation May Be Lacking, Or Will Not Tell You How It Will Work In Your System

Lessons Learned - Diagnostics

- Diagnostics Processes/Tools must better address False Alarm Rate
- Supplier must better understand Total Diagnostics Requirements
 - Fault Coverage
 - Fault Isolation
 - False Alarms
 - Failure Reporting & Recording
- Diagnostic System must have integrated onboard and off-board capability that can be updated in a timely manner

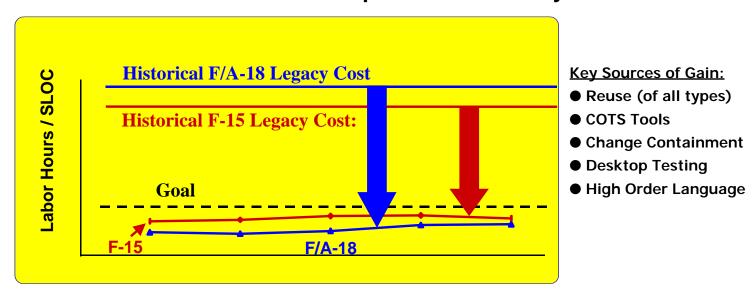
Total System Diagnostics Architecture Must Minimize NFF Occurrences


2/26/00

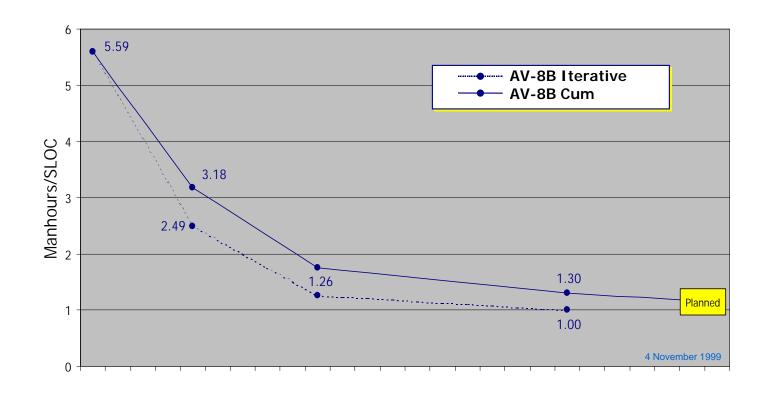
Lessons Learned - Prototyping

- Early And Frequent Prototyping Required Throughout The Program
- Develop Software Incrementally Utilizing Daily Builds
- Complex Functionality needs to be partitioned and implemented early
- Verify Design And Ensure API's Meet Needs Of User
- Verify Software And Hardware Performing As Expected

No New Lessons from Legacy Developments


Object Oriented Design in a Functional **Decomposition World**

OSCAR-TDL12-003-V1


Early Returns - Measured Benefit

Cumulative Software Development Productivity

Measured Software Development Affordability Improvement

S/W Development Productivity (Hand plus Rose Generated Code)

Lesson Learned - OSCAR Hardware

Qual Test

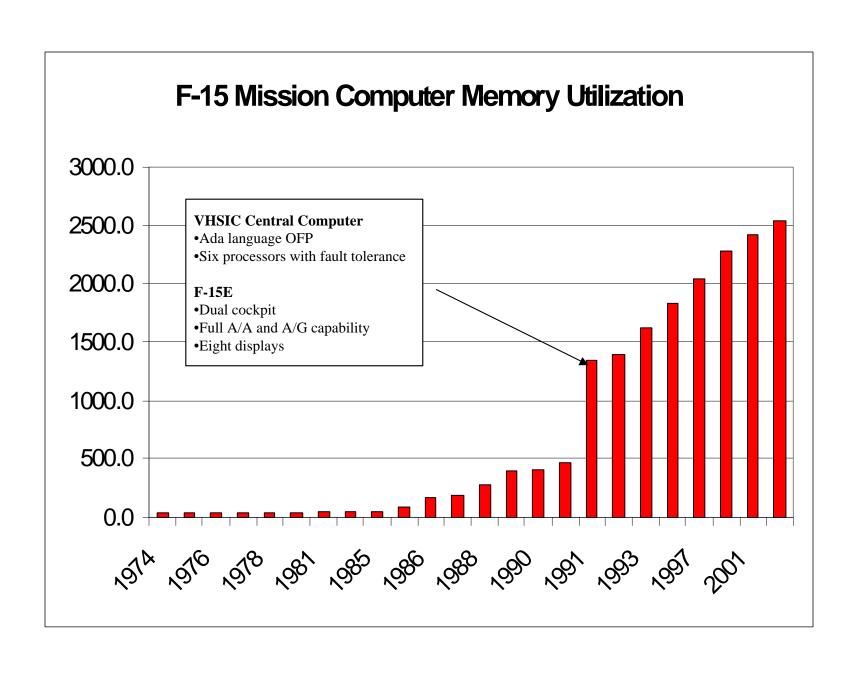
• The following environmental qual tests have been completed:

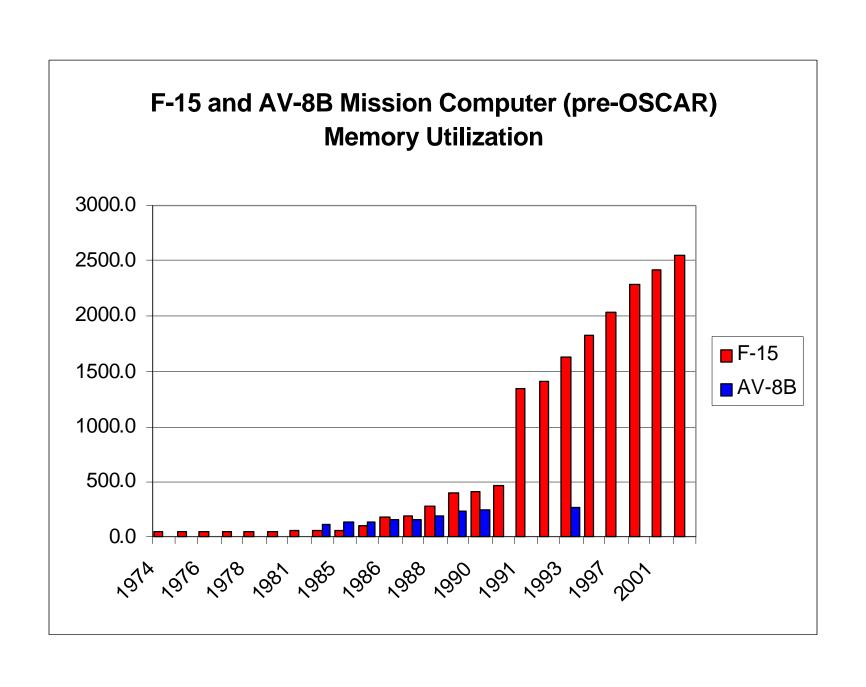
MSC & WMC

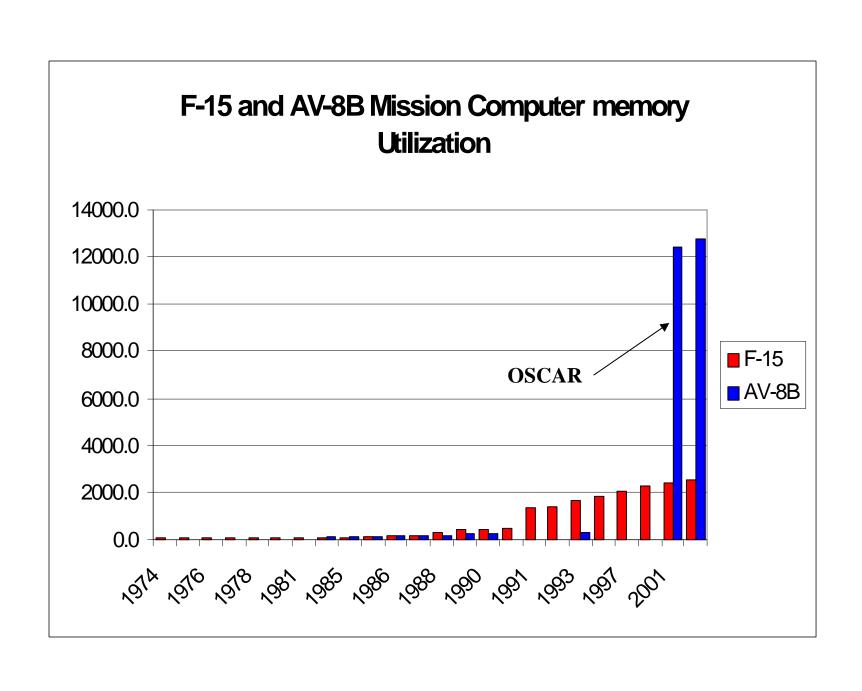
- Temp-Alt
- Vibration
- EMIC
- Acoustic Noise
- Loads
- Shock
- Humidity
- Salt
- Exp Atmosphere
- Sand & Dust

Qual Test Cont'd

- COTS hardware did Well.
 - No problems with off-the-shelf DY-4 Processor board (one capacitor failure in RDT.
- No problems with plastic parts (PEMS)
 - Hardware with plastic parts were exposed to MIL-STD-810 Humidity and Salt-Fog environments in two WRA's with no failures.
 - Was a major concern of some people early in the program.


Reliability

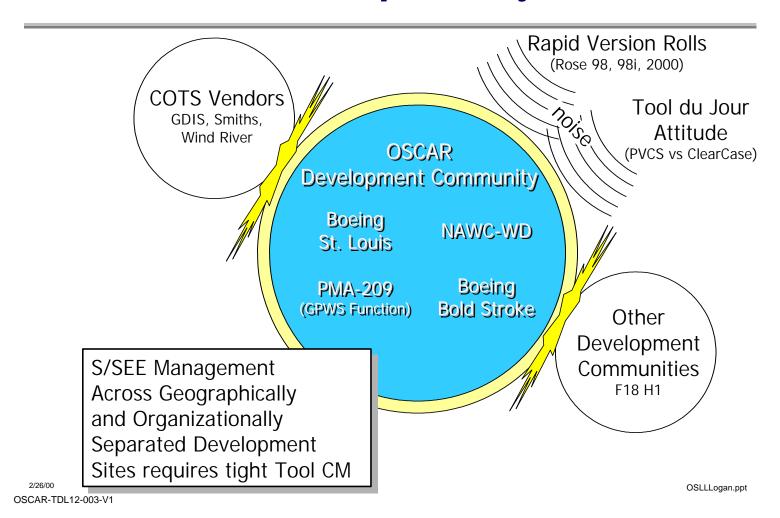

- Reliability experience to date with COTS hardware has been good.
- Reliability Development Testing (RDT) done on three WRAs.
 - WMC 1,000+ hours
 - MSC #1- 1,000+ hours
 - MSC #2 1,000+ hours
- One capacitor failure on COTS board, Root cause unknown.
- One commercial grade capacitor failed on another SRA.
 Switching to a MIL-SPEC capacitor.
- Other failures occurred, but unrelated to COTS hardware.


Memory and Throughput

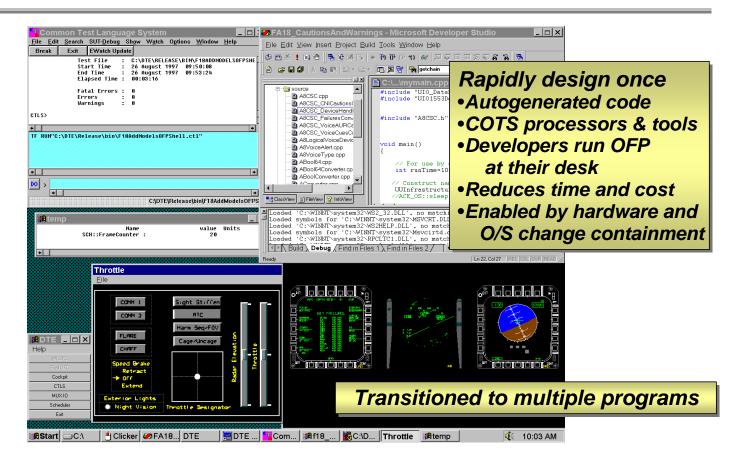
- OOD is a big resource consumer.
- The F-15 Central Computer OFP had already been converted from an assembly language to a HOL (Ada) in the early 1990's.
- Felt comfortable with initial OSCAR estimates based on complexity of the F-15 aircraft versus the AV-8B, a six processor solution (on the F-15) versus a single processor, and the continued growth in available throughput in commercial processors.

However, a 4x estimate turned into a 40x reality

Memory and Throughput Conclusions


- Use of OOD has a tremendous impact on Memory usage.
- Believe throughput impact is even greater, although more difficult to compare.
- Lesson Learned Use of OOD adds an order of magnitude (or more) to memory and throughput requirements.

Tools Lessons


OSA Lessons Learned - Tools

- Not All Commercial Tools Scale To Large Development Programs
- Interoperability Of Commercial Tools Must Be Evaluated Prior To Selection
- Keep Up With New Tool Versions To Maintain Vendor Support
- Plan Tool Transitions
- Utilize Dedicated Tool Engineers

Tool Compatibility

Desktop Test Environment

2/26/00 OSCAR-TDL12-003-V1

Summary

Lessons Learned Summary (Most Critical)

COTS

- Use Existing Products
 - Don't Push Technology, Follow It (Cost/Schedule\Risk)
 - Use Technology Rolls To Satisfy Growth, Not Baseline Requirements
- DOD Programs Have Limited Influence On Commercial Developments
 - Very-Very-Small Quantities Compared to Industry
- COTS Does Well In Qualification Testing

Open Systems Design

- Cultivate/Develop Multiple Production Sources Up Front
- Partition Software Workpackages Along Functional Lines (Self Contained Packages)

Lessons Learned Summary (Cont.) (Most Critical)

C++ / OO Design

- Throughput Is Difficult To Estimate
- Scale The Software To the EXISTING Computer Resources:
 - Memory, Throughput, I/O
- In Order To Reuse Functional Software The Top Level Requirements MUST Be The Same
- Reused Software Will Require Significant Rework
- Process & Procedures Are No Substitute For A Stable, Well-Trained Workforce
- Troubleshooting Transient Problems Is More Difficult in COTS Environment
- Turnaround On Fixes Is Much Quicker

Functionality

- Document And Bound All Requirements
- Limit New Functionality Until After Legacy Is Complete
- Be Selective in Legacy Problem Fixing During Conversion
- Use Multiple Metrics To Identify Problems

Priority Order of the Top 10 OSCAR Lessons Learned

- 1 -- Document And Bound All Requirements
- 2 -- Reused Software Will Require Significant Rework
- 3 -- Process & Procedures Are No Substitute For A Stable Well Trained Workforce
- 4 -- Throughput Is Difficult To Estimate (OO)
- 5 -- Use Existing Products (COTS)
- 6 -- Use Multiple Metrics To Identify Problems
- 7 -- DOD Programs Have Limited Influence On Commercial Developments
- 8 -- Troubleshooting Transient Problems Is More Difficult
- 9 -- In Order To Reuse Functional Software The Top Level Requirements

 MUST Be The Same
- 10-- Partition Software Workpackages Along Functional Lines (Self Contained Packages)

2/26/00 OSCAR-TDL12-003-V1

Summary

- How Are We Doing with Respect to Earlier Expectations?
 - LCC savings and schedule improvements will not be realized until 2nd and 3rd upgrades
 - Thruput estimates were off by an order of magnitude
- Where Are We Going with the Open Systems Approach?
 - Boeing Company roadmap for all legacy and future A/C system upgrades
- Where Are We Going with Metrics Collection?
 - Classes planned-vs-actuals is the best metric for program progress indicator
 - Will continue to collect thru OC1.3 to set baseline
- What Are We Going to "Do" with Lessons Learned Metrics?
 - Compare to legacy systems metrics(where available) and produce / quantify data to establish baseline for F/A-18 & JSF systems development
 - Incorporate lessons learned into Boeing-wide training programs 54

The Next Step

Answer 5 Questions (Based On OSCAR Experiences)

- 1 -- How Fast Can The Investment Costs Be Recaptured?
- 2 -- Is OO/C++ Software Transparent To Hardware?
- 3 -- What is the Ratio Of New Functionality Development Costs Of OO/C++ vs. Assembly
- 4 -- Does OO/C++ Software Reduce Retest?
- 5 -- Is COTS Less Expensive?

The Next Steps - Develop A Plan

Develop A Plan/Process to Collect/Generate Data* that will Support the Determination of:

1 -- Actual Cost Of OSCAR Software Conversion

- Use As Basis For Determining Investment Cost
- Factor Out New Functionality
- Requirements through Fleet Release
- Compare Against Original Estimates
 - If Different, Why?

2 -- Actual Cost Of New Hardware (WMC / AMC)

- Development Of Boxes
 - Use As Basis For Determining Investment Cost
- Unit Production Costs
- Compare Against Predictions
- Compare Against Dedicated Mil Spec. Box (Non-COTS)

3 -- Was COTS Less Expensive?

Why or Why Not?

The Next Steps - Develop A Plan

Develop A Plan/Process to Collect/Generate Data* that will Support the Determination of:

- 4 -- Actual Costs Of new Functionality
 - AMRAAM/13C (OC1.1)
 - JDAM, HQ/SG (OC1.2)
- 5 -- Comparsion With Assembly Language Version
 - Was It Cheaper to Develop? To Test?
 - Why?
- 6 -- "Will OO & C++ Cause Less Retest In Subsequent OFPs?"
 - How?
 - Generate An OC1.2 Metric To Measure Unplanned Fixes To Legacy Caused By New Functionality
- 7 -- Costs Associated With Migrating OSCAR OFP To New Processors
 - 603e to 750
 - 750 to G4
 - Was Hardware Transparent to Applications OFP?
 - If Not then Why?
 - Identify Issues

OSLLLogan.ppt oscar-tdli2Note: Some Data May Not Be Available Until After The Completion Of OC1.1 & AMC&D

The Next Steps - Determine the Pay Back

- Using
 - The Initial Investment Costs
 - Follow On New Development Costs
- Determine
 - How Much Software Must Be Written To Pay Back Initial Investment

Bold Stroke Open Systems Lessons Learned